# data structures

## Succinct de Bruijn Graphs

This post will give a brief explanation of a Succinct implementation for storing de Bruijn graphs, which is recent (and continuing) work I have been doing with Sadakane. Using our new structure, we have squeezed a graph for a human genome (which took around 300 GB of memory if using

## FM-Indexes and Backwards Search

Last time (way back in June! I have got to start blogging consistently again) I discussed a gorgeous data structure called the Wavelet Tree. When a Wavelet Tree is stored using RRR sequences, it can answer rank and select operations in $\mathcal{O}(\log{A})$ time, where A is the

## Wavelet Trees: an Introduction

Today I will talk about an elegant way of answering rank queries on sequences over larger alphabets – a structure called the Wavelet Tree. In my last post I introduced a data structure called RRR, which is used to quickly answer rank queries on binary sequences, and provide implicit compression. A

## RRR: A Succinct Rank/Select Index for Bit Vectors

This blog post will give an overview of a static bitsequence data structure known as RRR, which answers arbitrary length rank queries in $\mathcal{O}(1)$ time, and provides implicit compression. As my blog is informal, I give an introduction to this structure from a birds eye view. If you